3.3 ORGANIZACION GENÓMICA VIRAL
Un virus es una particula no viva que solo puede reproducirse a si misma infectando una celula viva y modificando la maquinaria celular de la huésped para general una descendencia de particulas virales. Los virus estan formados por una cubierta proteica y un núcleo central que contiene su genoma.
Los virus están ampliamente distribuidos en la naturaleza afectando a los organismos de los reinos animal y vegetal, protistas y hongos. Incapaces de vida independiente han sido aislados de plantas superiores, algas, hongos, bacterias, protozoarios, invertebrados, anfibios, reptiles, peces, aves y mamíferos. Debido a su capacidad de producir enfermedad son causa de epidemias severas en el hombre y/o en los animales ocasionando graves problemas de salud pública y cuantiosas pérdidas económicas cuando afectan al ganado o a las plantas que se utilizan como alimentos.
Los genomas víricos pueden ser de DNA o RNA y de cadena doble o sencilla.
|
Los genomas de RNA de doble cadena están segmentados (constituidos por distintas moléculas de RNA, cada una de ellas portadora de un determinado gen). Los genomas de RNA de cadena sencilla pueden estar segmentados
Los genomas de DNA de doble cadena pueden ser lineales o circulares.
Genes solapados: una misma secuencia puede codificar distintas proteinas funcionales dependiendo del marco de lectura escogido.
Los retrovirus poseen un enzima denominado transcriptasa reversa capaz de sintetizar una copia de DNA a partir de una molécula de RNA.
En ciertos casos, los virus sintetizan enormes poli proteínas que posteriormente son escindidas enzimáticamente para dar lugar a varias proteínas funcionales.
|
Ácidos nucleicos virales
Los virus se caracterizan, a diferencia de los otros organismos, por presentar una única especie de ácido nucleico constitutiva que puede ser ADN o ARN, monocatenario o bicatenario con estructura de doble hélice
Tipos de ADN virales
La mayoría de los virus ADN presentan un genoma bicatenario, con excepción de los parvovirus, constituidos por ADN monocatenario. Además las moléculas de ADN viral pueden ser lineales o circulares.
Tipos de ARN virales
Los ARN de los virus animales son en su gran mayoría de cadena simple, siendo Reoviridae y Birnaviridae las únicas familias que presentan como genoma ARN bicatenario. En algunos grupos de virus, el ARN genómico está segmentado en varios fragmentos, cuyo número es característico de cada familia
Las características usadas para la clasificación de los virus se basan en:
a.- Tipo de células hospedadoras (animal, vegetal, bacteriana)
b.- Naturaleza química del ácido nucleico (RNA, DNA)
c.- Morfología del virión (helicoidal, icosaédrico, complejo)
d.- Lugar de replicación (núcleo, citoplasma)
ESTRUCTURA
a.- Tipo de células hospedadoras (animal, vegetal, bacteriana)
b.- Naturaleza química del ácido nucleico (RNA, DNA)
c.- Morfología del virión (helicoidal, icosaédrico, complejo)
d.- Lugar de replicación (núcleo, citoplasma)
ESTRUCTURA
El tamaño de los virus está comprendido entre 20 y 300 nm. Ya que la mayoría miden menos de 250 nm, límite de resolución del microscopio óptico, sólo son visibles con ayuda del microscopio electrónico.
Los virus están compuestos de un núcleo central formado por ácido nucleico (DNA o RNA, pero nunca los dos en el mismo virión) rodeado por una proteína que constituye la cápsida. El núcleo central y la cápsida forman conjuntamente la nucleocápsida del virión. Además de las proteínas de la cápsida, muchos virus contienen dentro de la cápsida uno o más enzimas que actúan en la replicación de los ácidos nucleicos del virus, polimerasas. Los retrovirus contienen la transcriptasa inversa que sintetiza una cadena de DNA a partir de RNA viral. Algunos virus contienen además una estructura que rodea a la nucleocápsida denominada envuelta formada por lípidos (mayoritariamente fosfolípidos aunque también existen glicolípidos, ácidos grasos, etc.). Esta envuelta puede así mismo tener espículas constituidas por glicoproteínas.
3.2.3 ADN MITOCONDRIAL
Los cromosomas de mitocondrias y cloroplastos son de DNA de doble cadena.Los cromososmas de los orgánulos contienen genes específicos de las funciones que lleva cabo el organulo, sin embargo la mayoría de funciones del organulo están codificadas en el núcleo. Las mitocondrias y cloroplastos probablemente se originaron por endosimbiosis de una procariota.
Las mitocondrias se encuentran en todos los seres eucariotas aerobios; contienen las enzimas para la mayor parte de las reacciones oxidativas que generan energia para las funciones celulares. Estas enzimas incluyen a la piruvato-deshidrogenasa, a las involucradas en el transporte de electrones, en la fosforilación oxidativa, en el ciclo del Krebs, y en la oxidación de los acidos grasos.
La estructura del genoma mitocondrial es circular como es el del genoma bacteriano. Se trata de una mol. circular de ADN, helicoidal, con doble hebra, y supercondensada. Se conocen algunos pocos casos de genomas mitocondriales de forma lineal. En muchos casos, el contenido de GC (guanina-citosina) del ADNmt difiere en gran medida del ADN nuclear, y esto permite separar el ADNmt del nuclear por centrifugacion en un gradiente de cloruro de cesio. No existen histonas u otras proteinas semejantes asociadas al ADNmt. Existen muchas copias del genoma mitocondrial en cada mitocondria, las que se ubican en ciertas regiones llamadas nucleoides. En muchos animales, las dos hebras que componen el ADNmt difieren en densidad porque las bases nitrogenadas no estᮠdistribuidas de forma equilibrada en ambas hebras.
El contenido de genes de genomas mitocondriales de distintas especies es bastante similar tanto en n° como en cantidad de funciones distintas. Sin embargo, el tamaño varia enormemente entre distintos organismos.
En los animales, el genoma mitocondrial generalmente es menor a 20 kb (kilobases); por ej. en el hombre el ADNmt tiene 16.569 bp (pares de bases). Por su parte, el ADNmt de una levadura contiene cerca de 80.000 bp (80 kb), mientras que en las plantas varia entre 100 y 2.000 kb. La mayor diferencia entre animales, hongos y plantas es que en los animales el ADNmt codifica algoun producto en casi toda su extensión, mientras que en el genoma mitocondrial de hongos y plantas existen largas secuencias de DNA que no codifican productos
En general, el ADNmt contiene información para la sintesis de una cantidad de componentes de las mitocondrias, como ser: distintos ARNt y ARNr, algunos de los polipetidos que constituyen las enzimas citocromo-oxidasas, NADH-deshidrogenasa, y ATPasas. Otros componentes de las mitocondrias estan codificados por genes nucleares y luego son introducidos a las mitocondrias.. Estos componentes incluyen a la ADN-polimerasa y otras proteins necesarias para la replicación del ADNmt; tambien la ARN-polimerasa y otras proteins de la transcripcion proteinas ribosomales para la formación de los ribosomas mitocondriales, factores de transcripcion proteicos, y algunas otras subunidades pepticas para la integración de las enzimas citocromo-oxidasas, NADH-deshidrogenasa, y ATPasas.
En los genomas mitocondriales de los hongos y las plantas, que son mucho mas grandes, los genes de ARNt no son separadores de los otros genes, ya que existen secuencias no codificantes bastante grandes entre genes.
No existen intrones en el genoma mitocondrial de animales, pero existen en el genoma mitocondrial de las plantas.
Bibliografía:
http://apuntes.infonotas.com/pages/biologia/la-celula/la-mitocondria.php
3.2.2 COMPLEJIDAD DEL GENOMA
Los genes se diferencian unos de otros por su función y por su tamaño, pero en la mayoría de ellos puede observarse una serie de rasgos topológicos comunes.
El hecho de definir con precisión que es un gen puede dificultarse ya que muchos genes eucarioticos contienen segmentos de DNA, llamados intrones, que se encuentran intercalados en la región transcrita del gen. Los intrones no contienen información para al formación del producto génico correspondiente. (p.e proteína). Se transcriben junto con las regiones codificantes (llamadas exones) pero luego son eliminados del transcrito inicial.
La correcta secuencia de nucleótidos de los intrones, de la región reguladora y de la región codificante es necesaria para crear un trascrito del tamaño adecuado, en el momento y lugar adecuado y estas tres partes deben considerarse como una unidad funcional completa, en otras palabras como parte de un gen.
Los genes están rodeados de mas DNA
Tamaño del genoma
Los tamaños de os genomas se miden en unidades formadas por miles de bases de nucleotidos (llamados kilobase, kb) o millones de pares de nucleotidos (megabases, mb), observa la tabla siguiente y dese cuenta que el tamaño de genoma aumenta con la complejidad del grupo (aunque hay diferencias dentro de los grupos.
Bibliografía:
www.ejournal.unam.mx/cns/no68/CNS06806.pdf
3.2.1.3 CROMOSOMAS
Los cromosomas se encuentran muy enrollados, si un solenoide tiene de diámetro 30 nm, un cromosoma condensado tiene 700 nm. Para esto el solenoide se enrolla sobre un esqueleto proteico compuesto de la enzima topoisomerasa II, que es capaz de pasar una cadena de DNA a través de otra.
PASOS DEL EMPAQUETAMIENTO CROMOSOMICO:
1) El DNA se enrolla sobre los nucleosomas que actúan como bobinas de hilo.
2) Los nucleosomas se enrollan formando un solenoide.
3) El solenoide forma lazos anclados a un esqueleto central.
4) El esqueleto unido a los lazos se dispone como un solenoide gigante.
BIBLIOGRAFIA:
3.2.12 SOLENOIDES
El DNA (asociado a las histonas) da dos vueltas alrededor de cada octamero de los nucleosomas, el nucleosoma es una forma distendida, de una forma muy enrollada denominado solenoide (30 nm) , el solenoide mantiene su forma mediante otra histona H1.
Para conseguir el primer nivel de empaquetamiento el DNA se enrolla alrededor de las histonas, que actúan, como bobinas de un hilo, un nuevo enrollamiento genera la conformación del solenoide.
BIBLIOGRAFIA
http://bioquimica-sil2.blogspot.com/2007/05/niveles-de-organizacin-de-la-materia.html
3.2.1.1 HISTONAS
Las proteínas responsables del empaquetamiento del ADN se denominan histonas. Estas proteínas forman parte del alrededor de la mitad de la masa de la cromatina. Hay 5 clases principales de histonas: H1, H2A, H2B, H3 y H4, todas ellas contienen una gran cantidad de residuos cargados positivamente ( Arg y Lys).
Características de las histonas.
*Unidad de periodo evolutivo: es el tiempo en el que la secuencia de aminoácidos de una proteína cambia en 1% después de que dos especies divergieron.
*Las histonas, se unen ionicamente a los grupos fosfato del ADN cargados negativamente. In vitro, esta interacción, se puede romper con 0.5 M de NaCl.
*Las histonas están conservadas evolutivamente, su función es tan crítica que no soportan cambios.
*Las histonas son objeto de modificaciones postraduccionales como metilaciones, acetilaciones y fosforilaciones en residuo específicos (Arg, His, Lys, Ser y Thr).
*En las células eritroides de embriones de pollo, existe una variante de H1 llamada H5, cuya función es desconocida (los eritrocitos de pollo, a diferencia de los humanos, son nucleados).
BLIBLIOGRAFIA:
http://laguna.fmedic.unam.mx/~evazquez/0403/estructura%20cromosoma1.html
3.2.1 ADN LINEAL Y EMPAQUETAMIENTO
Una célula humana contiene alrededor de 2 metros de DNA (1 metro por cada serie cromosomica). El cuerpo humano está constituido por unas 1013 células y cada célula es diploide, por lo que contiene en total unos 2x1013 metros de DNA.
La distancia de la tierra al sol es 1,5 x 1011 metros…
Ello significa que el DNA de nuestro cuerpo podría extenderse hasta el sol y volver casi 100 veces. Este hecho significa que el DNA de las eucariotas debe estar empaquetado de una forma muy eficaz.
3.2 ORGANISMOS EUCARIOTICOS
BIBLIOGRAFIA:
http://www.educarchile.cl/Portal.Base/Web/VerContenido.aspx?ID=95586
Se denomina eucariotas a todas las células que tienen su material hereditario fundamentalmente (su información genética) encerrado dentro de una doble membrana, la envoltura nuclear, que delimita un núcleo celular.
En los organismos eucarióticos, la mayoría de los genes se encuentra en los cromosomas del núcleo. Las especies eucarióticas se clasifican como diploides (dos series de cromosomas en el núcleo), o son haploides (1 sola serie de cromosomas en el nucleo), la mayoría de algas y hongos son haploides y el resto de eucariotas (incluyendo plantas y animales) son diploides.
La letra n se utiliza para designar el número de cromosomas de un genoma nuclear de un organismo.
Diploide: 2n.
Haploide: n.
Las condiciones 3n, 4n, 5n,: Se conocen como poliploides.
Los análisis de secuencia han demostrado que hay DNA entre los genes, de función desconocida la mayor parte. El tamaño y la naturaleza de este DNA dependen del genoma. En hongos, este DNA intergénico es pequeño, pero en mamíferos es muy grande
Desde un punto de vista conceptual, en algún lugar entre los propios genes y estas regiones intergénicas existen secuencias de DNA que pueden estar bastante alejadas de un gen pero que afectan su regulación. Pueden ser considerarse parte de la unidad funcional del gen, incluso aunque esten separados por largos tramos de DNA que no tienen nada que ver con el gen en cuestión.
En muchas eucariotas, el DNA que esta entre los genes puede ser de tipo repetitivo, consistente en varios tipos de diferentes de unidades que se repiten a través del genoma. El DNA repetitivo también puede encontrase dentro de los intrones. La cantidad de DNA repetitivo varia entre diferentes especies e incluso existen variaciones del número de repeticiones dentro de una especie. La función del DNA repetitivo es todavía un misterio.
En una célula diploide, puesto que hay dos series cromosomitas, existen dos cromosomas de cada tipo. Los miembros de cada par se conocen como cromosomas homologos. Los miembros de un par homologo básicamente son identicos y aportan los mismos genes, aunque muchas veces diferentes alelos (formas diferentes de un mismo gen).
Para determinar el número de cromosomas de una célula, estos simplemente se tiñen y se cuentan al microscopio óptico.
Bibliografía
Las principales regiones de un gen:
un gen es una región de DNA cromosómico que puede trascribirse en una molécula de RNA funcional en el momento y lugar adecuados del proceso de desarrollo de un organismo. Para que esto ocurra un extremo de un gen contiene una región reguladora, es decir un segmento de DNA con una secuencia especifica de nucleótidos que le permita recibir y responder a señales de otras partes del genoma o del ambiente celular. En el otro extremo del gen existe una región encargada de terminar la trascripción.
No hay comentarios:
Publicar un comentario